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Abstract. We describe an efficient method to compute the efficiency factors for radiation pressure for
randomly-oriented axially-symmetric nonspherical grains. The method is based on Waterman’s T-matrix
approach and may be used in computations for grains with sizes smaller than or of the order of the
wavelength. An illustrative numerical example for randomly oriented spheroidal grains is given.

1. Introduction

In solving many astrophysical problems, one has to take into account radiation pressure
upon small particles (see, e.g., Mathews, 1967; Kwok, 1975; Tarafdar and
Wickramasinghe, 1976; Martin, 1978; Burns etal., 1979; Simpson etal., 1980;
Voshchinnikov and II'in, 1983; Jura, 1984; Voshchinnikov, 1986; Frohlich and Notni,
1988; Gustafson, 1989). Though in most cases of astrophysical interest the scattering
particles are nonspherical, in practical computations they are usually replaced by
‘equivalent’ spheres, and then the Mie theory is employed, i.e., the following formula is
used (van de Hulst, 1957):
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where C,, is the cross-section of radiation pressure, a, and b, are Mie coefficients,
k = 2m/A, A is the wavelength, and the asterisk denotes the complex conjugate values.
The purpose of the present paper is to discuss a more general problem: namely, to
consider computation of the cross-sections of radiation pressure for ensembles of
randomly-oriented axially-symmetric nonspherical particles. In Section 2, we use
Waterman’s (1971) T-matrix approach to obtain some generalization of Equation (1),
which is applicable to this more general case, and briefly describe the corresponding
computational scheme. In Section 3, some illustrative numerical results for spheroidal
grains are given.

It is worthwhile to note here that Onaka (1980) and, recently, Voshchinnikov (1990)
considered computation of the radiation pressure upon homogeneous and layered
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spheroidal particles. Nevertheless, their results are of limited use because they con-
sidered only particles in fixed orientation with respect to the direction of light propa-
gation, whereas in nature nonspherical grains are most frequently distributed over
orientations rather than perfectly aligned.

2. Computational Method

The cross-section of radiation pressure for an ensemble of randomly-oriented identical
nonspherical particles is given by (e.g., van de Hulst, 1957; Bohren and Huffman, 1983)

C, = C,y— Cy, cost), 2

pr ext

. 18 the extinction cross-section, C,., is the scattering cross-section, and
{cos 0) is the average cosine of the scattering angle (or asymmetry parameter of the
phase function). All these quantities are assumed to be averaged over the uniform
orientational distribution of a nonspherical particle. To compute these quantities, we
shall use the T-matrix approach (Waterman, 1971), which seems to be the most efficient
tool of solving light scattering problems for homogeneous and layered axially-symmetric
nonspherical particles of size not too large as compared with the wavelength.

Let us consider a nonspherical particle with a fixed orientation with respect to the
laboratory reference frame. Using the T-matrix approach, we expand the fields that are
incident upon (superscript i) and scattered by (superscript s) this particle in vector
spherical waves as follows (Tsang et al., 1984):

E‘(r) = } [a,,, RgM,,,(kr) + b, RgN,,,(kr)] (3)

where C

and
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The vector spherical waves RgM,,,, and RgN,,,,, in Equation (3) have a Bessel function
radial dependence, while the functions M,,,,, and N,,,,, in Equation (4) have a Hankel
function radial dependence. The expansion coefficients of the incident field a4,,,, and b,,,,
are assumed to be known (e.g., for a plane incident wave they are given by simple
analytical expressions), whereas the expansion coefficients of the scattered field p,,,,, and
q,,., are initially unknown. The relation between these coefficients is linear and is given
by a transition matrix (or T-matrix) T as

Prn = Z [Trll:m’l'n'am'n’ + Tr:ﬁtm’n’bm’n’] » (5)
Qon = Z [Tniitm%'am'n' + Tiflfzm’n’bm'n’] . (6)

The elements of the T-matrix do not depend upon the directions of propagation and
states of polarization of the incident and scattered fields. They depend only upon the
size, morphology, and composition of the scattering particle, as well as upon its
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orientation with respect to the laboratory reference frame. The 7T-matrix can be
computed by using special formulae, and then one easily computes the expansion
coefficients of the scattered field and the scattered field itself (see Equations (5)—(6) and
(4), respectively), as well as the amplitude scattering matrix, optical cross-sections,
single scattering albedo, etc.

The T-matrix approach is especially efficient for axially-symmetric scatterers, because
in this case the T-matrix can be diagonalized with respect to the indices #m and m' by
computing it in the natural (or body) coordinate system with the z-axis along the axis
of particle symmetry (see, e.g., Tsang et al., 1984)
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where 9, is the Kronecker delta, and T is the T-matrix of the axially-symmetric
particle computed in its natural coordinate system. After computing the matrix T, the
T-matrix of the particle with respect to the laboratory reference frame can easily be
computed by using the formula (Varadan, 1980; Tsang et al., 1984)

T =D '(af)TD(py), ®)

where D are Wigner’s D-matrices (see, e.g., Varshalovich et al., 1975), and the Eulerian
angles of rotation a, 8, and 7 specify the orientation of the particle with respect to the
laboratory reference frame.

An important advantage of the T-matrix approach is that it is ideally suited to
calculate orientationally averaged quantities for randomly oriented or partially aligned
nonspherical particles (Tsang et al., 1984; Mishchenko, 1990a—e). In particular, in a
recent paper we have shown (Mishchenko, 1990a) that the extinction cross-section,
averaged over the uniform orientational distribution of identical axially-symmetric par-
ticles, is given by
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To compute the quantity C,., {cos 8>, we proceed as follows. By definition (see, e.g.,

van de Hulst, 1957),
+1

{cos 6> =% j d(cos )®(8) cos 6, (10)

—1

where ®(6) is the phase function. Let us expand the function ®(6) in Legendre poly-
nomials as

®(0) = i x, P (cos0). (1)

s=0
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Then, by using Equation (11) and the orthogonality relation

+1
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25 + 1

-1
we have
{cosB> = x,/3. (13)

Formulae for the expansion coefficients x, for an ensemble of randomly oriented,
identical, axially-symmetric particles have been derived in our recent paper
(Mishchenko, 1990c). By using these formulae, one easily obtains
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and C/'" are Clebsch—Gordan coefficients related to Wigner’s 3j-symbols by (e.g.,

nynt nam

Varshalovich et al., 1975)
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Thus, to compute the orientationally averaged cross-section of radiation pressure for
an ensemble of randomly oriented, identical, axially-symmetric particles, it is sufficient
to calculate the T-matrix with respect to the natural reference frame of the particle (i.e.,
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the matrix T) and then to use Equations (19)—(20), (18), (17), (15)-(16), (14), (9), and
(2). Formulae for computing the matrix T for homogeneous axially-symmetric particles
are given, e.g., by Tsang et al. (1984). Computation of the matrix T for composite
particles is considered by Peterson and Strém (1974), Strém and Zheng (1988), Zheng
(1988), Zheng and Strom (1989), and Wang and Barber (1979). Numerical aspects of
the T-matrix computations are extensively discussed by Wiscombe and Mugnai (1986).
Finally, convenient formulae for computing the Clebsch—Gordan coefficients, appearing
in Equations (14) and (17)—(18), are collected in Appendix B of Mishchenko (1990c¢).

It should be noted that for a spherical particle with spherically symmetric internal
structure,

Tr}1}1mn’ = - 5nn’ bn s (2 1)
Tr}ﬁzmn’ = Tn%lzmn’ =0 ’ (22)
Trflimn’ =~ 5nn’ a,, (23)

where g, and b, are the Mie coefficients, if the particle is homogeneous, and their
analogues, if the particle is radially inhomogeneous (see, e.g., Bohren and Huffman,
1983; Prishivalko eral., 1984). By using the properties of the Clebsch—Gordan
coefficients (e.g., Varshalovich ez al., 1975), one easily derives Equation (1) as a particu-
lar case of more general Equations (9) and (14).

3. Illustrative Numerical Results

In this section, we present some illustrative numerical results for randomly-oriented
spheroidal grains. The shape of a spheroid in its natural reference frame is governed by
the equation

a2 —1/2
r 6, ¢) =a (sin20 + y cos? 0) , (24)

where b is the rotational semi-axis, and a is the horizontal semi-axis of the spheroid.
Another pair of parameters, that may be used to specify the shape of the spheroid, is
(r,,» d), where d = a/b is the ratio of the semi-axes, and r,, is the radius of the equal-
volume sphere given by

r.,=ad~ 1. (25)

In Table I we give numerical results for particles with r,, = 0.1 pm and for two values
of the refractive index: m, = 1.7 + 0.03i and m, = 2.5 + i. Instead of the cross-sections,
the efficiency factors for radiation pressure are displayed which are given by

Q,r = G, /S, (26)

where S = nr2 is the geometrical cross-section of the equal volume sphere. The com-
putational parameters, that determine the accuracy of the T-matrix computations (see,
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TABLE 1

Efficiency factors for radiation pressure for spheres and randomly oriented spheroids with r,, = 0.1 pm

Wavelength, m, = 1.7+ 0.03i m,=25+1i
pm

Prolate Spheres, Oblate Prolate Spheres, Oblate

spheroids, d=1 spheroids, spheroids, d=1 spheroids,

d=1)2 d=2 d=1/2 d=2
0.1 1.368 1.284 1.441 1.540 1.441 1.552
0.2 1.564 1.794 1.590 1.896 1.782 1.908
0.3 1.385 1.425 1.316 2.231 2.114 2.244
0.4 0.9292 0.9772 0.9687 2.540 2.394 2.528
0.5 0.6647 0.6535 0.6666 2.744 2.759 2.740
0.6 0.4612 0.4504 0.4609 2.746 2.828 2.788
0.7 0.3053 0.2959 0.3062 2.434 2.396 2.499
0.8 0.2060 0.1985 0.2072 2.009 1.852 2.047
0.9 0.1450 0.1391 0.1461 1.619 1.418 1.627
1.0 0.1068 0.1021 0.1076 1.309 1.110 1.303

e.g., Wiscombe and Mugnai, 1986), were chosen such that the accuracy of computing
the efficiency factors for radiation pressure was better than 0.019%.
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